Fixed Point Sets for Permutation Modules
نویسنده
چکیده
Let A = kG, the group algebra of some finite group where the characteristic of the field k divides |G|. In contrast to working over the complex field, the kGmodules are not usually semisimple. If a Sylow p-subgroup of G is not cyclic then there are infinitely many indecomposable kG-modules, and we usually enjoy little control over the category of such modules. It is therefore an important problem to find classes of modules which may be expressed as a sum of a not very great number of indecomposables, and to understand the structure of these indecomposables.
منابع مشابه
The 2-modular Permutation Modules on Fixed Point Free Involutions of Symmetric Groups
1.1 Let A = kG, the group algebra of some finite group where the characteristic of the field k divides |G|. In contrast to working over the complex field, the kG-modules are not usually semisimple. If a Sylow p-subgroup of G is not cyclic then there are infinitely many indecomposable kG-modules, and we usually enjoy little control over the category of such modules. It is therefore instructive t...
متن کاملVariational inequalities on Hilbert $C^*$-modules
We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory on Hilbert $C^*$-modules is studied.
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملFixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations
In this paper, we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.
متن کاملOn Fixed Point Sets and Lefschetz Modules for Sporadic Simple Groups
We consider 2-local geometries and other subgroup complexes for sporadic simple groups. For six groups, the fixed point set of a noncentral involution is shown to be equivariantly homotopy equivalent to a standard geometry for the component of the centralizer. For odd primes, fixed point sets are computed for sporadic groups having an extraspecial Sylow p-subgroup of order p, acting on the comp...
متن کامل